Von Karman Institute, Belgium

Evaluation of the Effects of Distributed Roughness Induced Transition on the EXPERT Vehicle

International Planetary Probe Workshop 2010 (IPPW7)

Barcelona, Spain

14th - 18th June, 2010

Guillaume Grossir, Sébastien Paris, Olivier Chazot

Von Karman Institute, Belgium

Distributed roughness

Nose of the Expert vehicle in CSiC

Active oxidation of the material can happen under specific condition:

Distributed roughness on the nose Turbulent flow

- Turbulent flow over the model can produce critical heat flux.
- Damage of the vehicle
- Payloads installed on the model can not be processed

What is the maximum allowable height for the roughness without triggering transition?

Methodology

- Tests in the Longshot facility,
 - Extraction of heat flux and Stanton number for qualification of the flow (laminar or turbulent)
- ➤ Evaluation of empirical correlations to predict transition,
 - Reda,
 - Reshotko,
- Comparison of experimental data and correlations
- > Extrapolation to flight

Longshot facility

Condition	Gas	T _o	P ₀	Mach	ρ∞	U∞	P∞	T _∞	Unit Re
		[K]	[bar]	[-]	[kg/m³]	[m/s]	[Pa]	[K]	[-]
low Re	N ₂	1740	550	13.9	0.0108	1880	140	44	6
med Re	N ₂	1640	1100	14.3	0.0196	1820	225	39	13.2
high Re	N ₂	1745	1470	14.8	0.0206	1880	235	39	17.5

Longshot facility

Expert model

33,5

32

- 23cm long,
- 21 thermocouples,
- 11 pressure sensors.

Distributed roughness

How do we represent roughness on the nose?

→ roughness location on the nose

→ identical size along the nose

- Is there a location more important than others?
 - \rightarrow tests with roughness only on the first part of the nose.
- Does density of distributed roughness have an effect?
 - → tests with various density of roughness on the nose.

Test Matrix

- Smooth reference cases: 2 tests (for low and medium Reynolds number).
- Location of distributed roughness effects: 3 tests.
- Density of distributed roughness effects: 3 tests.
- Size of distributed roughness effects: 6 tests at low and medium Reynolds number.

Longshot Experiments, effects of roughness location

"Which zone of the nose is the most likely to trigger transition?"

Effects of roughness location

Empirical correlations to predict transition on the EXPERT model

Only Reda and Reshotko criteria can be applied to distributed roughness

Longshot Experiments, effects of roughness location

"Which zone of the nose is the most likely to trigger transition?"

Roughness on the front are less effective

Longshot Experiments, effects of roughness size

Tests with different sizes of roughness at different Reynolds numbers.

Test matrix

Reynolds number	Re _L ≈3.2*10 ⁶	Re _L ≈1.7*10 ⁶		
Smooth case				
Range [0.15 – 0.2mm]		\searrow		
Range [0.2 – 0.3mm]				
Range [0.21 – 0.42mm]				
Range [0.42 – 0.59mm]				

Results on the flap side Re_L≈3.2*10⁶ (medium)

Smooth case

range [0.15 - 0.2]

range [0.2 - 0.3]

range [0.21 - 0.42]

Expert model

- - - Laminar theoretical Stanton

- - - Turbulent Theoretical Stanton

• Results on the cone side Re₁≈3.2*10⁶ (medium)

This test will be used as reference for the roughness density effect

Effects of roughness density

Effects of roughness density

Medium Reynolds

Reda flight predictions: 0.13 - 0.37 mm

Reda prediction corrected by ground experiments: 0.12 – 1.2 mm

Reshotko flight predictions : 0.22 - 0.32 mm

Reshotko prediction corrected by ground experiments : 0.22 – 0.8 mm

Conclusions

- To trigger transition, the most effective part of the nose for distributed roughness is the rear part,
- For medium Reynolds number (Re_L≈3.2*10⁶), transition occurs for roughness size greater than 0.175mm,
- For low Reynolds number (Re_L≈1.7*10⁶), transition occurs for roughness size greater than 0.5mm,
- Transition is very sensitive to distributed roughness density.
- For flight conditions, critical heights are estimated as:
 - Between 0.12 and 1.2mm (Reda)
 - Between 0.22 and 0.8mm (Reshotko)

Future work

- Main remaining unknown: Distributed roughness characteristics occurring in flight (size, location, density, shape...)
- Reduce the uncertainties of flight extrapolation with additional tests in the Longshot facility.
 - More precise height of roughness
 - Better definition of the most critical area
 - Wall temperature effect
- Launch: post flight analysis should help us to choose the best criteria and the best approach for extrapolation to flight.

Thanks for your attention

Longshot Experiment, effects of roughness size low Re

• Results on the flap side $Re_L \approx 1.7*10^6$ (low)

- - - · Laminar theoretical Stanton - - - · Turbulent Theoretical Stanton

Longshot Experiment, effects of roughness size low Re

• Results on the cone side $Re_L \approx 1.7*10^6$ (low)

range [0.2 - 0.3]

range [0.21 - 0.42]

range [0.42 - 0.59]

Expert model

_ _ _ Laminar theoretical Stanton

_ _ _ Turbulent Theoretical Stanton

Longshot Experiment, effects of roughness size low Re

Empirical correlations used

• Reda
$$\left[\frac{\rho_k u_k k}{\mu_w}\right]_{TR} = constant$$

• Reshotko
$$Re_{\theta,TR} = 180 \left(\frac{k}{\theta}\right)^{\!\!-1} \! \left(\frac{T_e}{2T_w}\right)^{\!\!-1.27}$$

Empirical correlations used

PANT original

$$Re_{\theta,TR} = 215 \left(\frac{k}{\theta} \frac{T_e}{T_w}\right)^{-0.7}$$

Van Driest

$$Re_{\theta,TR} = 200 \left(1 + 0.9 \left(\frac{T_w}{T_e} - 1 \right) + 0.048 \times M_e^2 \right) \times \frac{\theta}{k} \times \left(1 + \frac{350 \times k}{R_N} \right)$$

Batt & Legner

$$Re_{\theta,TR} = \frac{500}{\Psi^{1.5}} \qquad \qquad \Psi = \frac{k}{\theta} \times \frac{T_e}{T_w} \times \left(\frac{1}{1 + \frac{350 \times k}{R_N}}\right)$$

Similarity parameter T_w/T_∞

Figure 12: Required surface temperature along the Expert model to fulfill the similarity parameter T_w/T_∞

CFD Longshot low Reynolds

CFD Longshot medium Reynolds

CFD Flight M14 pcfc

Batt & Legner flight predictions : 0.32 - 0.41 mm

Batt & Legner prediction corrected by ground experiments :

Pressure measurements

Test 1652 Medium Reynolds

Roughness size [0.15 – 0.2mm]

